首页 | 本学科首页   官方微博 | 高级检索  
     


Consistency of a recursive nearest neighbor regression function estimate
Authors:Luc Devroye  Gary L. Wise
Affiliation:McGill University, Montreal, Canada;University of Texas, Austin, Texas 78712 USA
Abstract:Let (X, Y) be an d × -valued random vector and let (X1, Y1),…,(XN, YN) be a random sample drawn from its distribution. Divide the data sequence into disjoint blocks of length l1, …, ln, find the nearest neighbor to X in each block and call the corresponding couple (Xi*, Yi*). It is shown that the estimate mn(X) = Σi = 1n wniYi*i = 1n wni of m(X) = E{Y|X} satisfies E{|mn(X) − m(X)|p} 0 (p ≥ 1) whenever E{|Y|p} < ∞, ln∞, and the triangular array of positive weights {wni} satisfies supinwnii = 1n wni 0. No other restrictions are put on the distribution of (X, Y). Also, some distribution-free results for the strong convergence of E{|mn(X) − m(X)|p|X1, Y1,…, XN, YN} to zero are included. Finally, an application to the discrimination problem is considered, and a discrimination rule is exhibited and shown to be strongly Bayes risk consistent for all distributions.
Keywords:Consistency   recursive estimation   regression function   nearest neighbors   weak convergence   nonparametric estimation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号