首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of Al(III) supersaturation and NaOH concentration on the rate of crystallization of Al(OH)3 precursor particles from sodium aluminate solutions
Authors:Li Huixin  Addai-Mensah Jonas  Thomas John C  Gerson Andrea R
Institution:Ian Wark Research Institute, ARC Special Research Centre, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.
Abstract:The growth kinetics of colloidal Al(III)-containing particles (diameter<1000 nm), nucleated in optically clear, supersaturated sodium aluminate solutions as a precursor to Al(OH)(3) crystals, has been studied using dynamic light scattering. Two series of solutions were examined at 22 degrees C to determine the influence of Al(III) supersaturation and NaOH concentration on the initial particle growth behavior. One solution series consisted of solutions with constant Al(III) absolute supersaturation (DeltaC) of 1.48 M and NaOH] range 1.83-4.00 M (NaOH]/Al(III)]=1.13-2.15) and Al(III) relative supersaturation (sigma)=3.86-10.36. The other solution series had a constant sigma of 7.55 and NaOH] range of 1.50-4.27 M (NaOH]/Al(III)]=1.18-1.54) and DeltaC=0.86-3.19. The correlation between the initial particle growth rates and supersaturation (DeltaC or sigma) revealed marked anomalies over the entire supersaturation range studied. The growth rate remained substantially constant in the DeltaC range 0.86-2.55 M (for the constant sigma solution series), before increasing sharply upon a further increase of DeltaC beyond 2.55 M. The variation of the growth rate with sigma in the range 3.86-9.00 (for the constant DeltaC solution series) was remarkably weak, contrary to expectation. At higher sigma (>9.00), however, a marked increase in growth rate with increasing sigma was displayed. At constant DeltaC or sigma, the growth rate showed a strong variation with NaOH concentration, indicating that Na(+) and OH(-) species play a pivotal role in the Al(OH) precursor particles (nuclei) growth process. Furthermore, the kinetics of growth displayed by these nanosized particles are an order of magnitude slower than those observed for macroscopic gibbsite (gamma-Al(OH)(3)) crystals at similar supersaturations and temperature. The difference may be rationalized in terms of particle size and Al(OH)(3) dimorphic phase dependent solubility effects. An empirically adequate growth kinetics modeling was achieved when the growth rates were correlated with the Al(III) supersaturation (DeltaC or sigma) and the excess (free) NaOH concentration, rather than the former alone, as is commonly the case. A critical NaOH]/Al(III)] molar ratio of 1.27-1.35, below which the particle growth rate increased markedly and above which the rate was significantly reduced, was observed. This behavior is believed to be linked to solution speciation change that occurs at certain Al(III) and NaOH compositions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号