Robust numerical analysis of the dynamic bubble formation process in a viscous liquid |
| |
Authors: | Mitsuhiro Ohta Daisuke Kikuchi Yutaka Yoshida Mark Sussman |
| |
Affiliation: | 1. Division of Applied Sciences, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan;2. Department of Mathematics, Florida State University, Tallahassee, FL 32306, United States |
| |
Abstract: | The dynamics of bubble formation from a submerged nozzle in a highly viscous liquid with relatively fast inflow gas velocity is studied numerically. The numerical simulations are carried out using a sharp interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations are solved through a hydrodynamic scheme with formal second-order accuracy. Numerical results agree well with experimental results and it is shown that the sharp interface CLSVOF method enables one to reproduce the bubble formation process for a wide range of inflow gas velocities. From numerical results, one can improve their understanding of the mechanisms regarding the dynamics of bubble formation. For example, it is found that for some sets of parameters that the bubble formation process reaches steady state after several bubbles are released from the nozzle. At steady state, bubbles uniformly rise freely in the viscous liquid. It is observed that the fluid flow around a formed bubble has a significant role in determining the overall dynamic process of bubble formation; e.g. the effect of the fluid flow from the preceding bubble can be seen on newly formed bubbles. |
| |
Keywords: | Bubble formation Bubble dynamics Numerical analysis CLSVOF method |
本文献已被 ScienceDirect 等数据库收录! |
|