首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron vibrational bands for HD+(X 2Sigmag+,v+=0-20)
Authors:Stimson S  Evans M  Hsu C-W  Ng C Y
Institution:Ames Laboratory, U.S. DOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Abstract:The authors have obtained rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron (vuv-PFI-PE) spectrum of HD in the photon energy range of 15.29-18.11 eV, covering the ionization transitions HD+(X 2Sigmag+,v+=0-21,N+)<--HD(X 1Sigmag+,v"=0,J"). The assignment of rotational transitions resolved in the vuv-PFI-PE vibrational bands for HD+(X 2Sigmag+,v+=0-20) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Rotational branches corresponding to the DeltaN=N+-J"=0, +/-1, +/-2, +/-3, and +/-4 transitions are observed in the vuv-PFI-PE spectrum of HD. The BOS simulation shows that the perturbation of vuv-PFI-PE rotational line intensities due to near resonance autoionization is very minor at v+>or=5 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for HD+(v+>or=5) presented here provide reliable estimates of state-to-state cross sections for direct photoionization of HD, while the rotationally resolved PFI-PE bands for HD+(v+<5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the vuv-PFI-PE bands, the ionization energies for the formation of HD+(X 2Sigmag+,v+=0-20,N+) from HD(X 1Sigmag+,v"=0,J") and the vibrational constants (omegae, omegaechie, omegaeye, and omegaeze), the rotational constants (Be and alphae), the vibrational energy spacings, and the dissociation energy for HD+(X 2Sigmag+) are determined. As expected, these values are found to be in excellent agreement with high level theoretical predictions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号