Synergistic Effect of Polyhedral Oligomeric Silsesquioxane and Multiwalled Carbon Nanotubes on the Flame Retardancy and the Mechanical and Thermal Properties of Epoxy Resin |
| |
Authors: | Qiuping Wang Hongbo Liang Shengmei Huang |
| |
Affiliation: | School of Material Science and Engineering, Nanchang Hangkong University, Nanchang, P. R. China |
| |
Abstract: | A novel polyhedral oligomeric silsesquioxane containing phosphorus and boron (PB-POSS) was synthesized. The resulting PB-POSS and multiwalled carbon nanotubes (MWCNTs) were incorporated into an epoxy resin (EP) to prepare PB-POSS/MWCNTs/EP composites through a solution mixing method. The synergistic effect of MWCNTs and PB-POSS on the thermal and mechanical properties and the flame retardancy of these flame retardant composites were studied. The experimental results showed that the introduction of PB-POSS or MWCNTs further improved the LOI values of the epoxy resin, and the highest LOI value (32.8%) was obtained for the formulation containing 14.6 wt% PB-POSS and 0.4 wt% MWCNTs. In addition, the incorporation of both PB-POSS and MWCNTs significantly improved the thermal and mechanical properties of the composites. The mechanical properties of composites containing 14.7 wt% PB-POSS and 0.3 wt% MWCNTs reached the maximum. The impact strength and flexural strength increased by 42% and 7%, respectively, compared to the neat epoxy resin. Thus, a combination of PB-POSS and MWCNTs in the appropriate ratio could effectively enhance the thermal and mechanical properties and the flame retardancy of the epoxy resin matrix. |
| |
Keywords: | polyhedral oligomeric silsesquioxane multiwalled carbon nanotubes epoxy resin flame retardancy mechanical properties |
|
|