摘 要: | 
多尺度损伤演化法则的构建是损伤力学从现象学走向理性坚实基础的核心之一. 然而, 迄今鲜有人注意到, 存在两类损伤变量: 几何意义上表征材料不连续程度的损伤与自由能折减(即材料受力性能退化)意义上的损伤. 如何实现从几何意义上的损伤向能量耗散意义上的损伤转化, 乃是固体破坏问题的枢机. 本文从两尺度视角给出了损伤演化法则及几何意义上的损伤向能量耗散(即受力性能的退化)转化过程的定量刻画, 进一步夯实了非局部宏-微观损伤模型的理性基础. 在本文模型中, 连续体被看作物质点的集合. 宏观物质点与其作用域中的其他物质点组成一系列物质点偶, 由此形成附加于其上的细观结构. 在外部载荷作用下, 物质点的位移引起物质点偶的变形. 当物质点偶的某种几何变形量(如正伸长量)超过临界值时, 微细观损伤开始发展. 细观层次物质点偶的渐进破坏引起宏观固体不连续程度的变化, 最终导致宏观连续体拓扑的改变. 因此, 将微细观损伤在作用域中的累积定义为该点的拓扑损伤, 以刻画宏观固体的不连续程度, 这在本质上是几何意义上的损伤. 另一方面, 损伤发展引起自由能耗散, 导致连续体力学性能的退化. 由于宏观能量耗散是作用域中细观物质点偶因损伤而导致的耗散能量之和, 因此能量(受力)意义上的损伤为作用域中细观物质点偶上的总耗能与总弹性自由能之比. 由此, 在细观层次上实现了从几何意义上的损伤向能量耗散(受力退化)意义上的损伤的转化. 在本文模型中, 不需要经典连续介质损伤力学或断裂相场模型中经验假定的能量退化函数, 物质点处的几何-能量转绎关系由该点的两尺度变形状态决定, 而非固定形式, 从而可能对复杂受力状态具有更好的适应性. 计算结果表明, 模型不仅可以捕捉到裂纹萌生、扩展全过程, 而且可以定量反映加载过程中的载荷-位移曲线. 与在宏观层次进行几何-能量转绎的宏-微观损伤模型相比, 本文模型可以更准确地捕捉到试验结果的细节.

|