首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Effect of Weight Fraction of H-PDMS on the Latex Membrane and the Stability of Composite Emulsion of H-PDMS/Acrylate
Authors:Zhongliang Ma  Xiangmei Wang  Lihua Zhang
Institution:Chemical Industry and Ecology Institute, North University of China , Shanxisheng-Taiyuan, 030051, P.R. China
Abstract:High hydrogen-containing polymethylsiloxane(H-PDMS)/polyacrylate composite emulsion was synthesized by a drop-adding method for monomer emulsion. The effects of weight fraction of H-PDMS on the stability of composite emulsion, water resistance and heat-aging resistance of the latex membrane have been investigated. The TEM demonstrated that latex particles are a core-shell structure. By analyzing the spectrums of FTIR and 1H-NMR, it can be indicated that H-PDMS had reacted with acrylate monomer resulting chemical bond formation. The core-shell structure and chemical bond play an important role to restrain phase separation of composite emulsion and enhance the stability of the emulsion. By analyzing the surface tension, apparent viscosity and morphological structure, the results showed that the stable composite emulsion system can be obtained in which the average latex particle size was smaller than 90 nm when weight fraction of H-PDMS is below 16% (based on the weight of acrylate monomer), the stable emulsion system can be obtained in which the average latex particle size becomes larger than 90 nm when the weight fraction of H-PDMS is above 20% of the acrylate monomer. The DSC demonstrated that the Tg of pure polyacrylate is 49°C, and there is only one Tg (35°C) when the weight fraction of H-PDMS is 13%, but there are two Tg (15°C and 25°C) when the weight fraction of H-PDMS is 16%. In addition, the water resistance and heat-aging resistance of composite latex membrane enhanced gradually with the increase of amount of H-PDMS.
Keywords:high hydrogen-containing polymethylsiloxane  modification  polyacrylate emulsion  composite emulsion  stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号