首页 | 本学科首页   官方微博 | 高级检索  
     

应用人工神经网络预测氢化可的松的溶解度
引用本文:曾玉香,王超,王炳强. 应用人工神经网络预测氢化可的松的溶解度[J]. 应用化学, 2009, 26(11): 1367-1370
作者姓名:曾玉香  王超  王炳强
作者单位:(1.天津渤海职业技术学院环境工程系 天津 300402;2.天津市环境保护科学研究院 天津)
基金项目:天津市高等学校科技发展基金计划资助项目 
摘    要:
以量子化学方法在密度泛函B3LYP/6-31G(d)水平上计算得到含有电负性原子的溶剂水、醇类、酮类、酯类、氯代烷烃共17种溶剂的结构参数:最高占用轨道能(EHOMO)、分子最低空轨道能(ELUMO)、分子偶极矩(μ)、分子总能量(Etotal) 、最正原子净电荷(q+)、最负原子净电荷(q-)。采用误差反向传播(BP)算法的三层人工神经网络,确定隐含层节点数为7,建立了EHOMO、ELUMO、μ、Etotal、q+、q-、摩尔体积(VM)、介电常数(ε)、温度(T)共9个参数与氢化可的松在不同温度下不同溶剂中的溶解度之间关系的模型。运用此神经网络模型可预测不同分离条件下氢化可的松的溶解度,平均预测相对误差为7.0%。

关 键 词:人工神经网络  氢化可的松  溶解度  量子化学  
收稿时间:2008-10-13
修稿时间:2009-04-15

Prediction of Solubilities of Hydrocortisone in Various Solvents using ANN
ZENG Yu-Xiang,WANG Chao,WANG Bing-Qiang. Prediction of Solubilities of Hydrocortisone in Various Solvents using ANN[J]. Chinese Journal of Applied Chemistry, 2009, 26(11): 1367-1370
Authors:ZENG Yu-Xiang  WANG Chao  WANG Bing-Qiang
Affiliation:(1.Enviromental Engineering Department,Tianjin Bohai Vocational Technical College,Tianjin 300402;2.Tianjin Academy of Environmental Sciences,Tianjin)
Abstract:
The structure parameters E_(HOMO), E_(LUMO),q~+,q~-,μ,E_(total) of seventeen solvents such as water, alcohols, aldehydes, esters, fluoroalkanes were calculated at B3LYP/6-31G( d) level. By means of error back-propagation (BP) algorithm artificial neural network (ANN) and 7 hidden layer units, the relationship between each of E_(HOMO), E_(LUMO), q~+, q~-, Μ, E_(total), V_M, e, T and solubility of hydrocortisone in various solvents at different temperatures were established. The solubilities of hydrocortisone under various conditions were predicted by virture of ANN with an average relative error of 7. 0%.
Keywords:artificial neural network  hydrocortisone  solubility  quantum chemical calculation
本文献已被 万方数据 等数据库收录!
点击此处可从《应用化学》浏览原始摘要信息
点击此处可从《应用化学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号