首页 | 本学科首页   官方微博 | 高级检索  
     检索      


NOx formation and flame velocity profiles of iso- and n-isomers of butane and butanol
Authors:Gregory A Chung  Benjamin Akih-Kumgeh  Graeme MG Watson  Jeffrey M Bergthorson
Institution:Department of Mechanical Engineering, McGill University, 817 Sherbrooke West, Montreal, Canada H3A 2K6
Abstract:NO formation and flame propagation are studied in premixed flames of iso- and n-isomers of butane and butanol through experimental measurements and direct simulation of experimental profiles. The stabilized flame is realized through the impingement of a premixed combustible jet from a contraction nozzle against a temperature-controlled plate. The velocity field is obtained by means of Particle Image Velocimetry (PIV) and nitric oxide concentration profiles are measured using Planar Laser Induced Fluorescence (PLIF), calibrated using known NO seeding levels. It is found that NO formation in n- and iso-isomers is comparable under the conditions considered, except for rich butanol mixtures, whereby NO formation is higher for iso-butanol. Generally, less NO is formed in butanol flames than in the butane flames. The experiment is simulated by a 1D chemically reacting stagnation flow model, using literature models of C1–C4 hydrocarbons Wang et al., 2010] and butanol combustion chemistry Sarathy et al., 2009, 2012]. NO prediction is tested using two of these mechanisms with a previously-published NOx submechanism added into the butane and butanol models. While a good level of agreement is observed in the velocity field prediction under lean and stoichiometric conditions, discrepancies exist under rich conditions. Greater discrepancies are observed in NO prediction, except for the C1–C4 mechanism which shows good agreement with the experiment under lean and stoichiometric conditions. The current study provides data for further development of mechanisms with NOx prediction capabilities for the fuels considered here.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号