首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Realization of oxyfuel combustion for near zero emission power generation
Authors:Toshiro Fujimori  Toshihiko Yamada
Institution:1. Research Laboratory, IHI Corporation Co., Ltd., 1 Shin-Nakahara-cho, Isogo-ku, Yokohama, Kanagawa 235-8501, Japan;2. Power Plant Division, IHI Corporation Co., Ltd., Toyosu, Koto-ku, Tokyo 135-8733, Japan
Abstract:Oxyfuel combustion is one of the promising carbon capture and storage (CCS) technologies for coal-fired boilers. In oxyfuel combustion, combustion gas is oxygen and recirculating flue gas (FGR) and main component of combustion gas is O2, CO2 and H2O rather than O2, N2 in air combustion. Fundamental researches showed that flame temperature and flame propagation velocity of pulverized cloud in oxyfuel combustion are lower than that in air with the same O2 concentration due to higher heat capacity of CO2. IHI pilot combustion test showed that stable burner combustion was obtained over 30% O2 in secondary combustion gas and the same furnace heat transfer as that of air firing at 27% O2 in overall combustion gas. Compared to emissions in air combustion, NOx emission per unit combustion energy decreased to 1/3 due to reducing NOx in the FGR, and SOx emission was 30% lower. However SOx concentration in the furnace for the oxyfuel mode was three to four times greater than for the air mode due to lower flow rate of exhaust gas. The higher SO3 concentration results that the sulphuric acid dew point increases 15–20 °C compared to the air combustion. These results confirmed the oxyfuel pulverized coal combustion is reliable and promising technology for coal firing power plant for CCS.In 2008, based on R&D and a feasibility study of commercial plants, the Callide Oxyfuel Project was started in order to demonstrate entire oxyfuel CCS power plant system for the first time in the world. The general scope and progress of the project are introduced here. Finally, challenges for present and next generation oxyfuel combustion power plant technologies are addressed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号