首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cahn–Hilliard modeling of particles suspended in two‐phase flows
Authors:Young Joon Choi  Patrick D Anderson
Institution:Department of Mechanical Engineering, Eindhoven University of Technology, , Eindhoven, The Netherlands
Abstract:In this paper, we present a model for the dynamics of particles suspended in two‐phase flows by coupling the Cahn–Hilliard theory with the extended finite element method (XFEM). In the Cahn–Hilliard model the interface is considered to have a small but finite thickness, which circumvents explicit tracking of the interface. For the direct numerical simulation of particle‐suspended flows, we incorporate an XFEM, in which the particle domain is decoupled from the fluid domain. To cope with the movement of the particles, a temporary ALE scheme is used for the mapping of field variables at the previous time levels onto the computational mesh at the current time level. By combining the Cahn–Hilliard model with the XFEM, the particle motion at an interface can be simulated on a fixed Eulerian mesh without any need of re‐meshing. The model is general, but to demonstrate and validate the technique, here the dynamics of a single particle at a fluid–fluid interface is studied. First, we apply a small disturbance on a particle resting at an interface between two fluids, and investigate the particle movement towards its equilibrium position. In particular, we are interested in the effect of interfacial thickness, surface tension, particle size and viscosity ratio of two fluids on the particle movement towards its equilibrium position. Finally, we show the movement of a particle passing through multiple layers of fluids. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:Cahn–  Hilliard theory  diffuse‐interface model  extended finite element method (XFEM)  temporary ALE scheme  finite element  hydrodynamics  incompressible flow  laminar flow  two‐phase flows
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号