首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Incompressible smoothed particle hydrodynamics simulation of multifluid flows
Authors:Songdong Shao
Institution:Environmental Fluid Mechanics, School of Engineering, Design and Technology, University of Bradford, , West Yorkshire BD7 1DP, UKSenior Lecturer
Abstract:This paper presents an incompressible SPH (ISPH) technique to simulate multifluid flows. The SPH method is a mesh‐free particle modeling approach that can treat free surfaces and multi‐interfaces in a simple and efficient manner. The ISPH method employs an incompressible hydrodynamic formulation to solve the fluid pressure that ensures a stable pressure field. Two multifluid ISPH models are proposed following different interface treatments: the coupled ISPH model does not distinguish the different fluid phases and applies the standard ISPH technique across the interface, whereas the decoupled ISPH model first treats each fluid phase separately and then couples the different phases by applying pressure and shear stress continuities across the interface. The two proposed models were used to investigate a gravity underflow with a low density ratio in a Generalized Reservoir Hydrodynamics (GRH) flume and a horizontal lock exchange flow with a high density ratio. Comparisons with data and relevant numerical error analysis indicated that the decoupled model performed well in cases of both low and high density ratios because of the accurate treatment of interface boundaries. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:density ratio  interface  ISPH  multifluid  pressure continuity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号