首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation between rheological,electrical, and microstructure characteristics in polyethylene/aluminum nanocomposites
Authors:Xingyi Huang  Chonung Kim  Zhisen Ma  Pingkai Jiang  Yi Yin  Zhe Li
Institution:1. Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China;2. Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China;3. Department of Electrical Engineering, School of Electronics and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
Abstract:Polyethylene (PE)/aluminum (Al) nanocomposites with various filler contents were prepared by a solution compounding method. We investigated the influence of the surface modification of Al nanoparticles on the microstructure and physical properties of the nanocomposites. The silane coupling agent octyl‐trimethoxysilane was shown to significantly increase interfacial compatibility between the polymer phase and Al nanoparticles. Rheological percolation threshold values were determined by analyzing the improvement in storage modulus at low frequencies depending on the Al loadings. Lower percolation threshold values were obtained for the composites prepared with the original nanoparticles than those prepared with the silane‐modified Al nanoparticles. A strong correlation between the time and concentration dependences of dc conductivity and rheological properties was observed in the different nanocomposite systems. The rheological threshold of the composites is smaller than the percolation threshold of electrical conductivity for both of the nanocomposite systems. The difference in percolation threshold is understood in terms of the smaller particle–particle distance required for electrical conduction when compared with that required to impede polymer mobility. It was directly shown by SEM characterization that the nanoparticle surface modification yielded better filler dispersion, as is consistent with our rheological and electrical analysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2143–2154, 2008
Keywords:aluminum (Al)  electrical percolation  microstructure  nanocomposites  polyethylene  rheological percolation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号