首页 | 本学科首页   官方微博 | 高级检索  
     


Confined dynamics, forms and transitions in colloidal systems: from clay to DNA
Authors:Levitz Pierre Emile
Affiliation:Laboratoire de Physique de la Matiére Condensée, UMR 7643 du CNRS-Ecole Polytechnique, 91128 Palaiseau, France. levitz@pmc.polytechnique.fr
Abstract:Colloidal suspensions are a classic example of confining systems developing large specific surfaces, presenting a rich variety of shapes and exhibiting complex organization on a length scale ranging from 1 nm to several micrometers. Two distinct confined dynamics are generally considered in such systems: (1) the embedded fluid dynamics entrapped in the pore network with two main contributions, surface interaction and long-range connectivity, and (2) the dynamics of the host matrix, associated with a time evolution of the interfacial geometry. This last contribution is particularly important during dynamic and structural transitions of colloidal suspensions such as jamming, glass transition, phase separations and flocculation. It is generally believed that the characteristic time scale needed to describe colloidal movement and interfacial geometrical reorganization is much slower than the dynamics of the embedded fluid (except in the trivial situation where the fluid molecule is irreversibly adsorbed to a colloidal surface). Thus, few connections are made between these two distinct dynamics. In this presentation, we show how the slow and confined water dynamics at proximity of a colloidal surface provides an original way to probe colloidal shape and colloidal orientation dynamics. Two topics are presented. First of all, water field-cycling NMR relaxometry is used to probe the glass transition and the strong rotational slowing down of a colloidal system made of plate-like particles, a synthetic clay (laponite). Second, we analyze the case of long colloidal thin rods (either mineral or biologic such as DNA cylinders) dispersed in very diluted suspensions. At large distance and/or long time, these particles appear as a portion of a line. We discuss how the embedded fluid dynamics can be sensitive to this morphological crossover and may provide information about the particle shape. Some comparisons with recent experiments are presented.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号