Abstract: | The Kármán-Polhausen integral method is used to investigate the problem of an unsteady-state thermal boundary layer on an isothermal plate with a stepwise change in the conditions of flow around the plate; analytical expressions are obtained for the thickness of the thermal boundary layer. A dependence is found for the rate of movement of the boundary between the steady-state and unsteady-state regions of the solution on the Prandtl number. A similar problem was solved in [1, 2] for a dynamic layer, Goodman [3] discusses the more partial problem of an unsteady-state thermal boundary layer under steady-state flow conditions. Rozenshtok [4] considers the problem in an adequate statement but, unfortunately, he permitted errors of principle to enter into the writing of the system of characteristic equations; this led to absolutely invalid results. In an evaluation of the advantages and shortcomings of the integral method under consideration, given in [4], it must only be added that the method is applicable to problems in which the initial conditions differ from zero since, in this case, approximation of the velocity and temperature profiles by polynomials is not admissible.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 64–69, July–August, 1970. |