The flow-through silica as the matrix to immobilize gold nanoparticles for HPLC applications |
| |
Authors: | Ting Qiao Li-yun Ma |
| |
Affiliation: | 1. Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China;2. Department of Pharmacy, Union Hospital of Huazhong University of Science and Technology, Wuhan, China |
| |
Abstract: | In the present study, the flow-through silica, featured with hierarchical pores, i.e., tunable mesopores and penetrable macropores, was attempted as the chromatographic stationary phase matrix to immobilize gold nanoparticles (AuNPs). It was first modified by mercapto groups (named as SiO2-SH), and then by AuNPs (named as SiO2-S-Au). Thanks to the characteristic macropores, the column backpressure of SiO2-S-Au was comparable to SiO2-SH, which effectively overcame the difficulty of high column backpressure upon the nanoparticles were introduced to the chromatographic matrix. Both the reversed-phase and hydrophilic interaction liquid chromatographic performance were observed on these two columns but with different selectivities. Hydrophobic, hydrophilic, hydrogen bond and electrostatic interactions between the SiO2-S-Au stationary phase and analytes could contribute to the retention. The SiO2-S-Au column showed excellent aqueous compatibility by “Stop-flow” test with the relative standard deviations (RSD) of analyte’s k (capacity factor) values from 0.59% to 2.88%. The reproducibility of SiO2-S-Au was acceptable with RSDs of analyte’s k values in the range of 3.13%-5.03%. In addition, compared with the SiO2-SH column, the SiO2-S-Au column had better separation performance and selectivity. The results demonstrated that the flow-through silica was a promising matrix for nanoparticles with low backpressure and different selectivities. |
| |
Keywords: | Flow-through silica gold nanoparticle low column backpressure stationary phase matrix |
|
|