首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fokker-Planck operator for free-molecular,nonspherical, thermally nonequilibrium Brownian particles
Authors:V S Galkin  S V Rusakov
Abstract:The Fokker-Planck collision operator entering into the kinetic equation for the velocity distribution function of convex nonspherical rigid homogeneous Brownian particles in a traveling inhomogeneous monatomic gas is derived. The regime of flow past the particles is free-molecular, i.e., the characteristic particle dimensions are much smaller than the average free path of the gas molecules, the interaction between the particles and their effect on the gas phase can be neglected, and a specular-diffuse law of interaction between the molecules and the particle surface holds. The particle temperatures T p are the same and differ from the local gas temperature T. Thermal nonequilibrium (T p T) leads to violation of the well-known relations between the diffusion coefficients in the spaces of the translational and angular velocities and the coefficients of forces and moments exerted on a particle. The coefficients in the unknown operator are calculated for the particles in the form of bodies of revolution with longitudinal symmetry. Data characterizing the effect of the nonsphericity of the particles, i.e., spheroids and sphere-cylinders, on the degree of violation are given.
Keywords:kinetic Fokker-Planck equation  nonspherical thermally nonequilibrium Brownian particles  finely-dispersed gas suspension
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号