首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature-pressure-induced solid-solid <100> to <110> reorientation in FCC metallic nanowire: a molecular dynamic study
Authors:Sutrakar Vijay Kumar  Roy Mahapatra D  Pillai A C R
Institution:Aeronautical Development Establishment, Defence Research and Development Organization, New Thipasandara Post, Bangalore 560075, India. vijay.sutrakar@gmail.com
Abstract:Atomistic simulation of initial <100> oriented FCC Cu nanowires shows a novel coupled temperature-pressure dependent reorientation from <100> to <110> phase. A temperature-pressure-induced solid-solid <100> to <110> reorientation diagram is generated for Cu nanowire with varying cross-sectional sizes. A critical pressure is reported for Cu nanowires with varying cross-sectional sizes, above which an initial <100> oriented nanowire shows temperature independent reorientation into the <110> phase. The effect of surface stresses on the <100> to <110> reorientation is also studied. The results indicate that above a critical cross-sectional size for a given temperature-pressure, <100> to <110> reorientation is not possible. It is also reported here that for a given applied pressure, an increase in temperature is required for the <100> to <110> reorientation with increasing cross-sectional size of the nanowire. The temperature-pressure-induced solid-solid <100> to <110> reorientation diagram reported in the present paper could further be used as guidelines for controlling the reorientations/shape memory in nano-scale applications of FCC metallic nanowires.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号