首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solid-state 33S MAS NMR of inorganic sulfates
Authors:Wagler Todd A  Daunch William A  Panzner Matthew  Youngs Wiley J  Rinaldi Peter L
Institution:Knight Chemical Laboratory, Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
Abstract:Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号