首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: studies using in-situ scanning tunneling microscopy
Authors:Kim Youn-Geun  Kim Jay Y  Vairavapandian Deepa  Stickney John L
Institution:Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
Abstract:The growth of Pt nanofilms on well-defined Au(111) electrode surfaces, using electrochemical atomic layer epitaxy (EC-ALE), is described here. EC-ALE is a deposition method based on surface-limited reactions. This report describes the first use of surface-limited redox replacement reactions (SLR(3)) in an EC-ALE cycle to form atomically ordered metal nanofilms. The SLR(3) consisted of the underpotential deposition (UPD) of a copper atomic layer, subsequently replaced by Pt at open circuit, in a Pt cation solution. This SLR(3) was then used a cycle, repeated to grow thicker Pt films. Deposits were studied using a combination of electrochemistry (EC), in-situ scanning tunneling microscopy (STM) using an electrochemical flow cell, and ultrahigh vacuum (UHV) surface studies combined with electrochemistry (UHV-EC). A single redox replacement of upd Cu from a PtCl(4)(2-) solution yielded an incomplete monolayer, though no preferential deposition was observed at step edges. Use of an iodine adlayer, as a surfactant, facilitated the growth of uniformed films. In-situ STM images revealed ordered Au(111)-(square root 3 x square root 3)R30 degrees-iodine structure, with areas partially distorted by Pt nanoislands. After the second application, an ordered Moiré pattern was observed with a spacing consistent with the lattice mismatch between a Pt monolayer and the Au(111) substrate. After application of three or more cycles, a new adlattice, a (3 x 3)-iodine structure, was observed, previously observed for I atoms adsorbed on Pt(111). In addition, five atom adsorbed Pt-I complexes randomly decorated the surface and showed some mobility. These pinwheels, planar PtI(4) complexes, and the ordered (3 x 3)-iodine layer all appeared stable during rinsing with blank solution, free of I(-) and the Pt complex (PtCl(4)(2-)).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号