首页 | 本学科首页   官方微博 | 高级检索  
     


Anharmonic analysis of the vibrational spectrum of ketene by density functional theory using second-order perturbative approach
Authors:Gupta V P
Affiliation:Department of Physics, University of Jammu, Jammu-Tawi 180006, India. vpgpt1@yahoo.in
Abstract:The paper reports main results of a comprehensive study of the vibrational spectrum of ketene computed using second-order perturbation theory treatment based on quartic, cubic and semidiagonal quartic force constants. Two different models--a homogeneous model using the same density functionals and basis functions for the harmonic calculations and anharmonic corrections, and a hybrid model in which the two parts of the calculation are conducted using different density functionals and basis sets--have been employed in the present calculations. Different DFT and CCSD methods and DZ and TZ extended basis sets involving diffuse and polarization functions have been used to calculate optimized and vibrationally averaged geometrical parameters, the harmonic and anharmonic vibrational frequencies and the spectroscopic constants such as anharmonicity constants, rotational constants, rotation-vibration coupling constants, Nielsen's centrifugal distortion constants and Coriolis coupling constants. Homogeneous model is found to be superior to the hybrid model in several respects. Difficulties in the hybrid model may arise due to one of the following reasons: (a) the basic requirement that the geometry optimization and frequency calculations must be done at the same level of theory to have valid frequencies is not met in the hybrid model; (b) the molecular structure gets reoptimized at the low level for anharmonic corrections; (c) in addition, the perturbation could also diverge for the above reasons, particularly for the very low, very anharmonic terms where the harmonic approximation is not close enough to make the perturbation work.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号