首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Earth-based equivalent low stretch apparatus for material flammability assessment in microgravity and extraterrestrial environments
Authors:SL Olson  HD Beeson  JP Haas  JS Baas
Institution:aNASA Glenn Research Center, Cleveland, OH 44135, USA;bNASA White Sands Test Facility, Las Cruces, NM, USA
Abstract:The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The equivalent low stretch apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of 3 at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results demonstrate that the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material’s flammability characteristics in the real-use environment of spacecraft or extraterrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates a material’s flammability with a much higher inherent buoyant convective flow.
Keywords:Cone calorimeter  Gravity  Flammability  PMMA  Ignition delay
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号