首页 | 本学科首页   官方微博 | 高级检索  
     检索      

壳聚糖制备多孔炭及其在电化学超级电容器中的应用(英文)
引用本文:季倩倩,郭培志,赵修松.壳聚糖制备多孔炭及其在电化学超级电容器中的应用(英文)[J].物理化学学报,2010,26(5):1254-1258.
作者姓名:季倩倩  郭培志  赵修松
作者单位:Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, School of Chemistry, Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao 266071, Shandong Province, P. R. China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
基金项目:China,Foundation of Key Laboratory of Colloid and Interface Chemistry,Ministry of Education;China.国家自然科学基金,山东省博士基金,胶体与界面化学教育部重点实验室(山东大学)开放课题和"泰山学者"计划资助项目 
摘    要:以壳聚糖为原料在 600、700、800和900℃直接炭化制备多孔炭 C-600,C-700, C-800 和C-900,其BET比表面积分别为278、461、515和625 m2·g-1.用恒流充放电和循环伏安法表征了其电化学性能. 结果表明, 由 C-800 制备电极的循环伏安图形更接近矩形, 在恒电流充放电实验中阴极和阳极过程基本对称, 说明该电极具有较好的电容性能.在 50 mA·g-1 的电流密度下,C-600、C-700、C-800和C-900的电容分别为96、120、154 和 28 F·g-1.由 C-800 制备电极的循环充放电稳定性好, 电流密度为1 A·g-1循环1000次后电容损失小于2%,说明壳聚糖制备多孔碳具有作为超级电容器电极材料的潜在价值. 同时还考察了不同浓度的电解液对C-800电化学性质的影响,发现在KOH浓度为 30%时的电容最大.依据实验结果,对多孔炭制备及其电化学性质间的关系进行了探讨.

关 键 词:超级电容器  电极  多孔炭  壳聚糖  电容  
收稿时间:2009-08-27
修稿时间:2010-02-02

Preparation of Chitosan-Based Porous Carbons and Their Application as Electrode Materials for Supercapacitors
JI Qian-Qian GUO Pei-Zhi, ZHAO Xiu-Song,.Preparation of Chitosan-Based Porous Carbons and Their Application as Electrode Materials for Supercapacitors[J].Acta Physico-Chimica Sinica,2010,26(5):1254-1258.
Authors:JI Qian-Qian GUO Pei-Zhi  ZHAO Xiu-Song  
Institution:Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, School of Chemistry, Chemical Engineering and Environmental Sciences, Qingdao University, Qingdao 266071, Shandong Province, P. R. China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
Abstract:Four porous carbon samples C-600, C-700, C-800, and C-900 were prepared by the carbonization of chitosan at 600, 700, 800, and 900 ℃ under N2 and had specific surface areas of 278, 461, 515, and 625 m2·g-1, respectively, based on nitrogen adsorption/desorption measurements. Their electrochemical properties were investigated by cyclic voltammetry (CV) and charge-discharge under constant current. The CV curves of C-800 have a rectangular shape and symmetrical anode and cathode processes. The capacitance of C-600, C-700, C-800, and C-900 are 96, 120, 154, and 28 F·g-1 derived fromthe galvanostatic charge-discharge curves at a current density of 50 mA·g-1, respectively. The C-800 composite electrode is highly stable and retains its capacitance well as the capacitance decreased by less than 2% after 1000 cycles at a current density of 1 A·g-1. Furthermore, with an increase in the concentration of the electrolyte, the shape of the CV curves of the C-800 based electrode becomes more and more rectangular and the specific current also increases. The relationship between the pore structures of the four porous carbon samples and their properties is discussed based on the experimental results. We suggest that chitosan-based porous carbon has potential application as electrochemical capacitor electrode materials.
Keywords:Supercapacitor  Electrode  Porous carbon  Chitosan  Capacitance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号