首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adaptive multiscale regression for reliable Raman quantitative analysis
Authors:Chen Da  Chen Zhiwen  Grant Edward R
Institution:State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China 300072.
Abstract:This paper presents a novel methodology, adaptive multiscale regression (AMR), to adaptively process Raman spectra for quantitative analysis. The proposed methodology aims to construct an optimal calibration model for a Raman spectrum at hand, regardless of its structural characteristics, thus facilitating the application of Raman spectroscopy as a general tool for analytical chemistry. AMR firstly splits the spectra in a calibration set into frequency components at different scales using adaptive wavelet transform (AWT). Parallel member models constructed at different scales are then fused into a final prediction. The contributions of member models to a fusion model are straightforwardly estimated by a partial least square (PLS) model that emerges from a cross-validation results matrix (X) and reference values (Y). This procedure avoids information leakage by fully utilizing the multiscale nature of the input Raman spectra instead of arbitrarily removing some part of the spectral information by calibrating to selected features. Theoretically, we establish that AMR represents an automatic data-driven strategy that captures the Raman spectral structures adaptively and accurately. Our work tests and refines the AMR method by drawing upon the systematic analysis of spectra formulated to yield challenges representative of those encountered in common Raman analyses. AMR compares favorably with other popular preprocessing methods. Satisfactory calibration results suggest that AMR has the capacity to improve robustness and reliability of Raman spectral analysis, and may well extend to other spectroscopic techniques.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号