首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Curing properties of novel curing agent based on phenyl bisthiourea for an epoxy resin system
Authors:P Ramesh  L Ravikumar  A Burkanudeen
Institution:1. Materials Laboratory, Engineering Centre, Lucas-TVS Ltd., Padi, Chennai, 600050, Tamil Nadu, India
2. Department of Chemistry, CBM College (Affiliated to Bharathiar University), Coimbatore, 641042, Tamil Nadu, India
3. PG & Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, 620020, Tamil Nadu, India
Abstract:Phenyl bisthioureas: 4,4′-(bisthiourea)diphenylmethane (DTM), 4,4′-(bisthiourea)diphenyl ether (DTE), and 4,4′-(bisthiourea)diphenyl sulfone (DTS) were synthesized and used as curing agents for the epoxy resin diglydicyl ether bisphenol A (DGEBA). Synthesized phenyl bisthioureas were characterized using FT-IR and 1H-NMR analysis. For comparison studies the epoxy system was also cured using the conventional aromatic amine 4,4′-diaminodiphenyl ether (DDE). Curing kinetics of epoxy/amine system was studied by dynamic and isothermal differential scanning calorimeter (DSC). Curing kinetic was evaluated based on model-free kinetics (MFK) and ASTM E 698 model, and the activation energy was compared with DDE. Curing system of phenyl bisthiourea link (DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS) shows two exothermic peaks, while that of the conventional aromatic amines showed only a single peak. The initial exothermic peak is due to the primary nitrogen of the thiourea group, and the exotherm at higher temperature is due to the presence of thiourea groups. Glass transition temperature (T g) of DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS cured resins were lowered by 323 K when compared to the widely used diaminodiphenyl ether (DDE) cured resin. Oxidation induction temperature measurement performed on DSC suggests that the DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS system cured resins has better oxidative stability when compared to cured DGEBA/DDE resin system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号