首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A boundary element simulation of the unsteady motion of a sphere in a cylindrical tube containing a viscoelastic fluid
Authors:R Zheng  N Phan-Thien
Institution:(1) Present address: Department of Mechanical Engineering, The University of Sydney, NSW 2006, Australia
Abstract:A boundary element method is used to simulate the unsteady motion of a sphere falling under gravity along the centreline of a cylindrical tube containing a viscoelastic fluid. The fluid is modelled by the upper-convected Maxwell constitutive equation. Results show that the viscoelasticity of the liquid leads to a damped oscillation in sphere velocity about its terminal value. The maximum sphere velocity, which occurs in the first overshoot, is approximately proportional to the square root of the Weissenberg number when the ratio of the sphere radius to the tube radius is sufficiently small. Particular attention is also paid to the wall effects. It is shown that a closer wall reduces the oscillatory amplitude of the sphere velocity but increases its frequency. The results suggest that the falling-ball technique, which is now widely used for viscosity measurement, might also be used for the determination of a relaxation time for a viscoelastic fluid.
Keywords:Sphere  viscoelastic fluid  unsteady motion  boundary element method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号