首页 | 本学科首页   官方微博 | 高级检索  
     


A diffusion gradient optimization framework for spinal cord diffusion tensor imaging
Authors:Majumdar Shantanu  Zhu David C  Udpa Satish S  Raguin L Guy
Affiliation:
  • a Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
  • b Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
  • c Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
  • d Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
  • Abstract:The uncertainty in the estimation of diffusion model parameters in diffusion tensor imaging (DTI) can be reduced by optimally selecting the diffusion gradient directions utilizing some prior structural information. This is beneficial for spinal cord DTI, where the magnetic resonance images have low signal-to-noise ratio and thus high uncertainty in diffusion model parameter estimation. Presented is a gradient optimization scheme based on D-optimality, which reduces the overall estimation uncertainty by minimizing the Rician Cramer-Rao lower bound of the variance of the model parameter estimates. The tensor-based diffusion model for DTI is simplified to a four-parameter axisymmetric DTI model where diffusion transverse to the principal eigenvector of the tensor is assumed isotropic. Through simulations and experimental validation, we demonstrate that an optimized gradient scheme based on D-optimality is able to reduce the overall uncertainty in the estimation of diffusion model parameters for the cervical spinal cord and brain stem white matter tracts.
    Keywords:Diffusion tensor imaging   MRI   Spinal cord   Cramer-Rao lower bound   Rician noise   Optimization
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号