Molecular adsorption and growth of n-butane adlayers on Pt(1 1 1) |
| |
Authors: | Jason F. Weaver Masamichi Ikai Anders Carlsson Robert J. Madix |
| |
Affiliation: | Department of Chemical Engineering and Chemistry, Stanford University, Stanford, CA 94305-5025, USA |
| |
Abstract: | The molecular adsorption of n-butane and the growth of n-butane adlayers on Pt(1 1 1) was investigated using molecular beam techniques, temperature-programmed desorption (TPD) and low-energy electron diffraction (LEED). It is found that as the surface coverage of n-butane increases, structural changes occur in the adlayer at surface temperatures near 98 K that are accompanied by changes in the binding energy and mobility of the adsorbed species. The film growth process can be divided into four distinct coverage regimes. At low coverages (θ<0.14 ML, where 1 ML is defined as one butane molecule per Pt atom) a disordered monolayer forms in which the butane molecules prefer to lie parallel to the surface in order to minimize their binding energy. At coverages from 0.14 to 0.20 ML, ordered regions develop within the monolayer in which the butane molecules also lie parallel to the surface. The binding energy in the ordered phase is lower than that in the disordered phase due to repulsive intermolecular interactions. A more densely-packed ordered phase begins to form at 98 K after the low-coverage ordered phase saturates at 0.20 ML. The experimental results suggest that the n-butane molecules tilt away from the surface in the high-coverage ordered phase. Finally, a disordered second layer phase forms after the high coverage ordered phase saturates at 0.35 ML. The molecules in the second layer are very mobile at 98 K and rapidly diffuse to the edges of the beam spot. Interchange of molecules between the second layer and ordered monolayer is found to govern the net rate of second layer diffusion at surface temperatures less than 133 K. The adsorption probability of n-butane on Pt(1 1 1) continuously increases with increasing coverage, with no significant dependencies on the structure of the n-butane adlayer. This finding indicates that the long-range arrangements and molecular orientations of a mobile alkane adlayer have a negligible influence on the intrinsic adsorption dynamics, suggesting that the energy transfer processes that facilitate adsorption are highly localized. |
| |
Keywords: | Molecule–solid reactions Adsorption kinetics Energy dissipation Physical adsorption Sticking Platinum Alkanes |
本文献已被 ScienceDirect 等数据库收录! |
|