首页 | 本学科首页   官方微博 | 高级检索  
     


Simple computer experiments with ordinary ice
Authors:Shulgin Ivan L  Ruckenstein Eli
Affiliation:Department of Chemical and Biological Engineering, State University of New York at Buffalo, Amherst, New York 14260, USA.
Abstract:Simple computer experiments in which various fractions of hydrogen bonds (H-bonds) in ice are allowed to break are presented in this paper. First, up to six million water molecules were used to build an artificial piece of ordinary hexagonal ice in the form of a cube, a monolayer, a bilayer, a trilayer, and thicker layers. Then, certain percentages of H-bonds were broken, and the obtained structures were examined. It was found that a large percentage of H-bonds must be broken in order to completely fragment the network of ice into clusters. For a cubic piece of ice, which can be considered bulk ordinary ice, this percentage is equal to 61% H-bonds, a figure also predicted as the threshold of the percolation theory for ice. If, as usually assumed, 13-20% of H-bonds are broken during melting (estimates based on the comparison between the heats of melting and sublimation of ice), the H-bond network of ice is not fragmented and the overwhelming majority of water molecules (>99%) belong to a new, distorted but unbroken network. The percentage of broken H-bonds required for full fragmentation of layers increases with the number of layers and reaches the bulk value of ice for 5-8 layers. This value is consistent with the literature observation that films of water thicker than 20-30 A have properties close to those of the bulk structure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号