首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Surface properties of Si from photoelectric emission at room temperature and 80 °K
Authors:T E Fischer
Institution:

a Bell Telephone Laboratories, Murray Hill, New Jersey, U.S.A.

b Yale University, New Haven, Connecticut, U.S.A.

Abstract:The position of the Fermi level with respect to the energy bands at a semiconductor surface as well as changes in the work function can be determined from the energy distributions of photoelectrically emitted electrons. Prior studies involved the photoelectric yield spectrum and required assumptions concerning the photoelectric threshold; the present method is free of such assumptions. Measurements at room temperature indicate that the Fermi level lies 0.23 eV and 0.41 eV above the top of the valence band for degenerate p and n-type materials, respectively. These results confirm those of Allen and Gobeli1). Cooling to 80 °K increases the work function of p-type material by 0.025 eV while that of n-type Si remains unchanged; the results show that the electron and hole gases in the surface states are degenerate. The density of surface states lies between 7 × 1013 and 1015 eV−1 cm−2. On the cesiated surface, the Fermi level lies 0.16 eV below the conduction band at room temperature and coincides with its bottom at 80 °K.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号