首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the orbital motion of a rotating inner cylinder in annular flow
Authors:Shunxin Feng  Qibing Li  Song Fu
Institution:Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract:In this paper, numerical calculations have been performed to analyse the influence of the orbital motion of an inner cylinder on annular flow and the forces exerted by the fluid on the inner cylinder when it is rotating eccentrically. The flow considered is fully developed laminar flow driven by axial pressure gradient. It is shown that the drag of the annular flow decreases initially and then increases with the enhancement of orbital motion, when it has the same direction as the inner cylinder rotation. If the eccentricity and rotation speed of the inner cylinder keep unchanged (with respect to the absolute frame of reference), and the orbital motion is strong enough that the azimuthal component (with respect to the orbit of the orbital motion) of the flow‐induced force on the inner cylinder goes to zero, the flow drag nearly reaches its minimum value. When only an external torque is imposed to drive the eccentric rotation of the inner cylinder, orbital motion may occur and, in general, has the same direction as the inner cylinder rotation. Under this condition, whether the inner cylinder can have a steady motion state with force equilibrium, and even what type of motion state it can have, is related to the linear density of the inner cylinder. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:annular flow  eccentricity  rotating cylinder  orbital motion  flow resistance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号