首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A methodology for high performance computation of fully inhomogeneous turbulent flows
Authors:Donghyun You  Meng Wang  Rajat Mittal
Institution:1. Center for Turbulence Research, Stanford University, Stanford, California 94305, U.S.A.;2. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.;3. Department of Mechanical and Aerospace Engineering, George Washington University, Washington, District of Columbia 20052, U.S.A.
Abstract:A large‐eddy simulation methodology for high performance parallel computation of statistically fully inhomogeneous turbulent flows on structured grids is presented. Strategies and algorithms to improve the memory efficiency as well as the parallel performance of the subgrid‐scale model, the factored scheme, and the Poisson solver on shared‐memory parallel platforms are proposed and evaluated. A novel combination of one‐dimensional red–black/line Gauss–Seidel and two‐dimensional red–black/line Gauss–Seidel methods is shown to provide high efficiency and performance for multigrid relaxation of the Poisson equation. Parallel speedups are measured on various shared‐distributed memory systems. Validations of the code are performed in large‐eddy simulations of turbulent flows through a straight channel and a square duct. Results obtained from the present solver employing a Lagrangian dynamic subgrid‐scale model show good agreements with other available data. The capability of the code for more complex flows is assessed by performing a large‐eddy simulation of the tip‐leakage flow in a linear cascade. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:large‐eddy simulation  Navier–  Stokes equations  inhomogeneous turbulent flow  multigrid method  high performance computation  OpenMP
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号