首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Attenuation in trabecular bone: A comparison between numerical simulation and experimental results in human femur
Authors:Bossy Emmanuel  Laugier Pascal  Peyrin Françoise  Padilla Frédéric
Institution:Laboratoire Photons et Matière, ESPCI, CNRS UPR 5, F-75005 France.
Abstract:Numerical simulations (finite-difference time domain) are compared to experimental results of ultrasound wave propagation through human trabecular bones. Three-dimensional high-resolution microcomputed tomography reconstructions served as input geometry for the simulation. The numerical simulation took into account scattering, but not absorption. Simulated and experimental values of the attenuation coefficients (alpha, dB/cm) and the normalized broadband ultrasound attenuation (nBUA, dB/cm/MHz) were measured and compared on a set of 28 samples. While experimental and simulated nBUA values were highly correlated (R(2)=0.83), and showed a similar dependence with bone volume fraction, the simulation correctly predicted experimental nBUA values only for low bone volume fraction (BV/TV). Attenuation coefficients were underestimated by the simulation. The absolute difference between experimental and simulated alpha values increased with both BV/TV and frequency. As a function of frequency, the relative difference between experimental and simulated alpha values decreased from 60% around 400 kHz to 30% around 1.2 MHz. Under the assumption that the observed discrepancy expresses the effect of the absorption, our results suggests that nBUA and its dependence on BV/TV can be mostly explained by scattering, and that the relative contribution of scattering to alpha increases with frequency, becoming predominant (>50 %) over absorption for frequencies above 600 kHz.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号