首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: demonstration of an isocrystalline core/shell synthetic method.
Authors:P V Radovanovic  D R Gamelin
Institution:Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA.
Abstract:This paper reports the application of ligand-field electronic absorption spectroscopy to probe Co(2+) dopant ions in diluted magnetic semiconductor quantum dots. It is found that standard inverted micelle coprecipitation methods for preparing Co(2+)-doped CdS (Co(2+):CdS) quantum dots yield dopant ions predominantly bound to the nanocrystal surfaces. These Co(2+):CdS nanocrystals are unstable with respect to solvation of surface-bound Co(2+), and time-dependent absorption measurements allow identification of two transient surface-bound intermediates involving solvent-cobalt coordination. Comparison with Co(2+):ZnS quantum dots prepared by the same methods, which show nearly isotropic dopant distribution, indicates that the large mismatch between the ionic radii of Co(2+) (0.74 A) and Cd(2+) (0.97 A) is responsible for exclusion of Co(2+) ions during CdS nanocrystal growth. An isocrystalline core/shell preparative method is developed that allows synthesis of internally doped Co(2+):CdS quantum dots through encapsulation of surface-bound ions beneath additional layers of CdS.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号