首页 | 本学科首页   官方微博 | 高级检索  
     

纵向数据广义部分线性模型的惩罚GMM估计
引用本文:倪艳风,朱仲义. 纵向数据广义部分线性模型的惩罚GMM估计[J]. 应用概率统计, 2012, 28(3): 285-300
作者姓名:倪艳风  朱仲义
作者单位:复旦大学管理学院统计学系
基金项目:国家自然科学基金项目(10931002,1091112038);国家社会科学基金项目(08BTJ001)资助
摘    要:对纵向数据的部分线性模型,通常的做法是用样条方法或者核方法逼近非参数部分,然后再用广义估计方程的估计方法去估计参数部分.本文使用P-样条拟合非参数函数,对不同的矩条件用不同的广义矩方法对模型的参数和非参数进行估计,并且给出了估计量的大样本性质;并用计算机模拟和实例证明了当模型中存在不同的矩条件时,采用不同的惩罚广义矩方法可以显著地提高估计精度.

关 键 词:纵向数据  部分线性模型  广义线性模型  P-样条  广义矩方法  惩罚广义矩方法

Partial Linear Models for Longitudinal Data Based on Penalized General Method of Moments
Ni Yanfeng Zhu Zhongyi. Partial Linear Models for Longitudinal Data Based on Penalized General Method of Moments[J]. Chinese Journal of Applied Probability and Statisties, 2012, 28(3): 285-300
Authors:Ni Yanfeng Zhu Zhongyi
Affiliation:Department of Statistics, Management School of Fudan University
Abstract:For the analysis of partial linear modelwith longitudinal data, the general procedure is to fit thenonparametric part with kernel or spline estimation, followed bygeneralized linear model estimating frame. In this paper, we fit thenonparametric part with P-spline, and estimate the parametrical andnonparametric part with different Generalized method of momentsestimation for different moment conditions, implemented by the proofof the asymptotical properties for the estimator, which is also beenproved by simulation and illustrative example, from which we canalso find out that different penalized general method of momentsestimations for different moment conditions perform moreefficiently.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用概率统计》浏览原始摘要信息
点击此处可从《应用概率统计》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号