首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Recent developments and applications of hybrid surface plasmon resonance interfaces in optical sensing
Authors:Shuyan Gao  Naoto Koshizaki
Institution:(1) College of Chemistry and Environmental Science, Henan Normal University, 46 Jianshe Street, Xinxiang, 453007 Henan, China;(2) Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Abstract:Nanostructured noble metals exhibit an intense optical near field due to surface plasmon resonance, therefore promising widespread applications and being of interest to a broad spectrum of scientists, ranging from physicists, chemists, and materials scientists to biologists. A wealth of research is available discussing the synthesis, characterization, and application of noble metal nanoparticles in optical sensing. However, with respect to the sensitivity of the frequency and width of these surface plasmon resonance modes to the particle’s shape, size, and environment, in nearly every case, success strongly depends on the availability of highly stable, adhesive, and sensitive nanoparticles. This undoubtedly presents a challenging task to nanofabrication. The past decade has witnessed fascinating advances in this field, in particular, the construction of oxide-based hybrid plasmonic interfaces to overcome the problem addressed above by (1) coating the metallic nanostructures with thin overlayers to form sandwiched structures or (2) embedding metallic nanostructures in a dielectric matrix to obtain metal/dielectric matrix nanocomposite films. In this critical review, we focus on recent work related to this field, beginning with a presentation of hybrid films with enhanced structural and optical stability, readily and selectively designed using chemical and physical techniques. We then illustrate their interesting optical properties and demonstrate exciting evidence for the postulated application in surface plasmon sensing fields. Finally, we survey the work remaining to be done for that potential to be realized.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号