首页 | 本学科首页   官方微博 | 高级检索  
     


Neural Network Models for Finline Discontinuities
Authors:Jin Long and Ruan ChengLi
Affiliation:(1) College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, People"rsquo"s Republic of China; jinlong@people.com.cn;(2) College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, People"rsquo"s Republic of China
Abstract:
The radial basis network is used as the finline discontinuities electromagnetic artifical neural network(EMdashANN) models. EM software analysis is employed to characterize finline discontinuities. EMdashANN models are then trained using physical parameters and frequency as inputs and equivalent electric circuit element parameters of finline discontinuities as outputs. Once trained , the EMdashANN models can simulate equivalent electric circuit element parameters of finline step, notch and strip very fast and efficiently.
Keywords:millimeterwave transmission line  finline discontinuity  radial basis function  EM  /content/m43678m47r860451/xxlarge8208.gif"   alt="  dash"   align="  MIDDLE"   BORDER="  0"  >ANN
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号