首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization and identification of isomeric flavonoid O-diglycosides from genus Citrus in negative electrospray ionization by ion trap mass spectrometry and time-of-flight mass spectrometry
Authors:Shi Peiying  He Qing  Song Yue  Qu Haibin  Cheng Yiyu
Affiliation:Pharmaceutical Informatics Institute, Zhejiang University, Hangzhou 310027, PR China
Abstract:
Flavonoid O-diglycosides are important bioactive compounds from genus Citrus. They often occur as isomers, which makes the structural elucidation difficult. In the present study, the fragmentation behavior of six flavonoid O-diglycosides from genus Citrus was investigated using ion trap mass spectrometry in negative electrospray ionization (ESI) with loop injection. For the flavonoid O-rutinosides, [M − H − 308] ion was typically observed in the MS2 spectrum, suggesting the loss of a rutinose. The fragmentation patterns of flavonoid O-neohesperidosides were more complicated in comparison with their rutinoside analogues. A major difference was found in the [M − H − 120] ion in the MS2 spectrum, which was a common feature of all the flavonoid O-neohesperidosides. The previous literature for naringin located the loss of 120 Da to the glycan part, whereas the present study for naringin had shown that the [M − H − 120] ion was produced by a retro-Diels-Alder reaction in ring C, and this fragmentation pattern was confirmed by the accurate mass measurement using an orthogonal time-of-flight mass spectrometer. Combined with high performance liquid chromatography (HPLC) and diode array detection (DAD), the established approach to the structural identification of flavonoid O-diglycosides by ion trap mass spectrometry was applied to the analysis of extracts of two Chinese medicines derived from genus Citrus, namely Fructus aurantii and F. aurantii immaturus. According to the HPLC retention behavior, the diagnostic UV spectra and the molecular structural information provided by multistage mass spectrometry (MSn) spectra, 13 flavonoid O-glycosides in F. aurantii and 12 flavonoid O-glycosides in F. a. immaturus were identified rapidly.
Keywords:Flavonoid O-diglycosides   Ion trap   Time-of-flight   Mass spectrometry
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号