首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Noisy saltatory spike propagation: The breakdown of signal transmission due to channel noise
Authors:Y?Li  G?Schmid  P?H?nggi
Institution:(1) Information and Computer Science Laboratory, Faculty of Education, Kagawa University, 1-1 Saiwai-cho, 760 akamatsu, Japan;
Abstract:Noisy saltatory spike propagation along myelinated axons is studied within a stochastic Hodgkin-Huxley model. The intrinsic noise (whose strength is inversely proportional to the nodal membrane size) arising from fluctuations of the number of open ion channels influences the dynamics of the membrane potential in a node of Ranvier where the sodium ion channels are predominantly localized. The nodes of Ranvier are linearly coupled. As a measure for the signal propagation reliability, we focus on the ratio between the number of initiated spikes and the transmitted spikes. This work supplements our earlier study A. Ochab-Marcinek, G. Schmid, I. Goychuk and P. Hänggi, Phys. Rev E 79, 011904 (2009)] towards stronger channel noise intensity and supra-threshold coupling. For strong supra-threshold coupling the transmission reliability decreases with increasing channel noise level until the causal relationship is completely lost and a breakdown of the spike propagation due to the intrinsic noise is observed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号