Long-range intensity correlations for the multiple scattering of waves in unordered media |
| |
Authors: | D. B. Rogozkin |
| |
Affiliation: | (1) Moscow Engineering Physics Institute, 115409 Moscow, Russia |
| |
Abstract: | The long-range correlations in the reflected and transmitted fluxes in the case of the coherent transport of waves in an unordered medium with discrete inhomogeneities are considered. The correlator and spectrum of the intensity fluctuations are expressed in a general form in terms of the one-center scattering amplitude and the propagators of the mean radiated intensity. The random interference of the waves and the fluctuations of the number of scattering centers in a microvolume of the medium are taken into account simultaneously. Detailed calculations are performed for two limiting radiation propagation regimes, viz., spatial diffusion and small-angle multiple scattering. It is shown that the conservation of the total flux upon elastic scattering leads to the formation of a dip in the spectrum and, accordingly, a negative correlation between the intensities at large distances. In the case of spatial diffusion this feature is displayed upon reflection, and in the case of small-angle multiple scattering it is displayed upon transmission through a slab. The relative roles of the various sources of intensity fluctuations, as well as the sensitivity of the correlations to factors that influence the wave propagation regime, viz., the finite size of the scattering sample, absorption in the medium, and the presence of a frequency shift in the incident waves, are analyzed. We find that fluctuations in the distribution of the scatterers show up most strongly in a medium with strong, i.e., “non-Born,” centers, especially if they exhibit absorption. Zh. éksp. Teor. Fiz. 111, 1674–1716 (May 1997) |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|