Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles |
| |
Authors: | Shahriar Mahdavi Mohsen Jalali Abbas Afkhami |
| |
Affiliation: | 1. Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran 2. Department of Analytical Chemistry, College of Chemistry, Bu-Ali Sina University, Hamedan, Iran
|
| |
Abstract: | This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions with novel nanoparticle sorbents (Fe3O4, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe3O4, ZnO, and CuO particles had mean diameters of about 50?nm (spheroid), 25?nm (rod shape), and 75?nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0?mg?g?1, for ZnO, CuO, and Fe3O4, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd2+?>?Pb2+?>?Cu2+?>?Ni2+, while the following order was determined in multiple component solutions: Pb2+?>?Cu2+?>?Cd2+?>?Ni2+. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd2+ and Pb2+ was adsorption, whereas both Cu2+ and Ni2+ sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|