首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lateral phase separation in cholesterol/diheptadecanoylphosphatidylcholine binary bilayer membrane
Authors:Tamai Nobutake  Uemura Maiko  Goto Masaki  Matsuki Hitoshi  Kaneshina Shoji
Institution:Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
Abstract:We investigated the phase behavior of cholesterol/diheptadecanoylphosphatidylcholine (C17:0-PC) binary bilayer membrane as a function of the cholesterol composition (X(ch)) by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry (DSC). The fluorescence spectra showed that the wavelength at the maximum intensity (lambda(max)) changed depending on the bilayer state: ca. 440 nm for the lamellar gel ( Formula: see text] or L(beta)) and the liquid ordered (L(o)) phases and ca. 490 nm for the liquid-crystalline (L(alpha)) phase. The transition temperatures were determined from the temperature dependence of lambda(max) and endothermic peaks of the DSC thermograms. Both measurements showed that the pre- and main transition disappear around X(ch)=0.05 and 0.30, respectively. The constructed temperature-X(ch) phase diagram resembled a typical phase diagram for a eutectic binary mixture containing a peritectic point. The presence of a peritectic point at X(ch)=0.15 suggested that a complex of cholesterol and C17:0-PC is stoichiometrically formed in the gel phase. Consideration based on the hexagonal lattice model revealed that the compositions of 0.05 and 0.15 correspond to the bilayer states where cholesterol molecules are regularly distributed in different ways. The former is nearly equal to the composition for the membrane occupied entirely with Units (1:18), composed of a cholesterol and 18 surrounding C17:0-PC molecules within the next-next nearest neighbor sites. The latter is represented by a Unit (1:6), including a cholesterol and 6 surrounding C17:0-PC molecules. Further, the disappearance of the main transition at X(ch)=0.30 indicates that the pure L(o) phase can exist in X(ch)>0.30. The eutectic behavior observed in the phase diagram was explainable in terms of phase separation between two different types of regions with different types of regular distributions of cholesterol.
Keywords:Cholesterol  Diheptadecanoylphosphatidylcholine  Eutectic behavior  Hexagonal lattice  Phase diagram
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号