Abstract: | We consider the ground-state properties of a rotating spin-orbit-coupled Bose-Einstein condensate under extreme elongation in a harmonic plus quartic potential. The effects of spin-orbit coupling and rotation on the ground-state vortex structures are investigated. In the absence of spin-orbit coupling, new nucleated vortices gradually form vortex lines and annular vortex structures with the increase of the rotation frequency. In the presence of spin-orbit coupling, part of the vortices arrange in a line and form a stable vortex chain, and the remanent vortices coexist in pairs aside such vortex chain. More specially, the remanent vortices of each component repel each other and form vortex pair for isotropic spin-orbit coupling, while attract each other and locate in the same positions for anisotropic spin-orbit coupling. |