首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical mechanistic study on the reaction of CN radical with HNCN
Authors:Wu Nan-Nan  He Chao-Zheng  Duan Xue-Mei  Liu Jing-Yao
Institution:Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, People's Republic of China.
Abstract:The mechanism for the reaction of the cyanogen radical (CN) with the cyanomidyl radical (HNCN) has been investigated theoretically. The electronic structure information of the singlet and triplet potential energy surfaces (PESs) is obtained at the B3LYP/6-311+G(3df,2p) level, and the single-point energies are refined at the CCSD(T)/6-311+G(3df,2p) level as well as by multilevel MCG3-MPWB method. The calculations show that the C atom of CN additions to middle- and end-N atoms of HNCN are two barrierless association processes leading to the energy-rich intermediates IM1 HN(CN)CN and IM2 HNCNCN, respectively, on the singlet PES. The higher barriers of the subsequent isomerization and dissociation channels from IM1 and IM2 indicate that these two intermediates, which have considerably thermodynamic and kinetic stability, are the dominant product at high pressure. While at low pressure, the most favorable product is P(2) H + NCNCN, which will be formed from both IM1 and IM2 via direct dissociation processes by the H-N bond rupture, and the secondary feasible product is P(4) HCN + (1) NCN, while P(5) HCCN + N(2) and P(6) HCNC + N(2) are the least competitive products. On the triplet PES, P(14) NCNC + HN may be a comparable competitive product at high temperature. In addition, the comparison between the mechanisms of the CN + HNCN and OH + HNCN reactions is made. The present results will enrich our understanding of the chemistry of the HNCN radical in combustion processes and interstellar space.
Keywords:reaction mechanism  cyanogen radical (CN)  cyanomidyl radical (HNCN)  potential energy surface (PES)  theoretical calculation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号