首页 | 本学科首页   官方微博 | 高级检索  
     


Resource augmentation for online bounded space bin packing
Authors:J  nos Csirik,Gerhard   J. Woeginger
Affiliation:a Department of Computer Science, University of Szeged, Aradi vértanúk tere 1, H–6720, Szeged, Hungary;b Department of Mathematics, University of Twente, PO Box 217, NL-7500, AE Enschede, The Netherlands;c Institut für Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010, Graz, Austria
Abstract:
We study online bounded space bin packing in the resource augmentation model of competitive analysis. In this model, the online bounded space packing algorithm has to pack a list L of items in (0,1] into a small number of bins of size bgreater-or-equal, slanted1. Its performance is measured by comparing the produced packing against the optimal offline packing of the list L into bins of size 1.We present a complete solution to this problem: For every bin size bgreater-or-equal, slanted1, we design online bounded space bin packing algorithms whose worst case ratio in this model comes arbitrarily close to a certain bound ρ(b). Moreover, we prove that no online bounded space algorithm can perform better than ρ(b) in the worst case.
Keywords:Online algorithm   Competitive analysis   Resource augmentation   Approximation algorithm   Asymptotic worst case ratio   Bin packing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号