首页 | 本学科首页   官方微博 | 高级检索  
     


New hybrid method for reactive systems from integrating molecular orbital or molecular mechanics methods with analytical potential energy surfaces
Authors:Espinosa-Garciá Joaquín  Rangel Cipriano  Navarrete Marta  Corchado José C
Affiliation:Departamento de Química Física, Universidad de Extremadura, 06071 Badajoz, Spain.
Abstract:
A computational approach to calculating potential energy surfaces for reactive systems is presented and tested. This hybrid approach is based on integrated methods where calculations for a small model system are performed by using analytical potential energy surfaces, and for the real system by using molecular orbital or molecular mechanics methods. The method is tested on a hydrogen abstraction reaction by using the variational transition-state theory with multidimensional tunneling corrections. The agreement between the calculated and experimental information depends on the quality of the method chosen for the real system. When the real system is treated by accurate quantum mechanics methods, the rate constants are in excellent agreement with the experimental measurements over a wide temperature range. When the real system is treated by molecular mechanics methods, the results are still good, which is very encouraging since molecular mechanics itself is not at all capable of describing this reactive system. Since no experimental information or additional fits are required to apply this method, it can be used to improve the accuracy of molecular orbital methods or to extend the molecular mechanics method to treat any reactive system with the single constraint of the availability of an analytical potential energy surface that describes the model system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号