Interaction identification of Zif268 and TATAZF proteins with GC‐/AT‐rich DNA sequence: A theoretical study |
| |
Authors: | Bo Yang Yanyan Zhu Yan Wang Guangju Chen |
| |
Affiliation: | College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China |
| |
Abstract: | Molecular dynamics (MD) simulations for Zif268 (a zinc‐finger‐protein binding specifically to the GC‐rich DNA)‐d(A1G2C3G4T5G6G7G8C9A10C11)2 and TATAZF (a zinc‐finger‐protein recognizing the AT‐rich DNA)‐d(A1C2G3C4T5A6T7A8A9A10A11G12G13)2 complexes have been performed for investigating the DNA binding affinities and specific recognitions of zinc fingers to GC‐rich and AT‐rich DNA sequences. The binding free energies for the two systems have been further analyzed by using the molecular mechanics Poisson‐Boltzmann surface area (MM‐PBSA) method. The calculations of the binding free energies reveal that the affinity energy of Zif268‐DNA complex is larger than that of TATAZF‐DNA one. The affinity between the zinc‐finger‐protein and DNA is mainly driven by more favorable van‐der‐Waals and nonpolar/solvation interactions in both complexes. However, the affinity energy difference of the two binding systems is mainly caused by the difference of van‐der‐Waals interactions and entropy components. The decomposition analysis of MM‐PBSA free energies on each residue of the proteins predicts that the interactions between the residues with the positive charges and DNA favor the binding process; while the interactions between the residues with the negative charges and DNA behave in the opposite way. The interhydrogen‐bonds at the protein‐DNA interface and the induced intrafinger hydrogen bonds between the residues of protein for the Zif268‐DNA complex have been identified at some key contact sites. However, only the interhydrogen‐bonds between the residues of protein and DNA for TATAZF‐DNA complex have been found. The interactions of hydrogen‐bonds, electrostatistics and van‐der‐Waals type at some new contact sites have been identified. Moreover, the recognition characteristics of the two studied zinc‐finger‐proteins have also been discussed. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011 |
| |
Keywords: | molecular dynamics simulation Zif268 TATAZF protein‐DNA binding MM‐PBSA free energy calculations |
|
|