首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shear‐improved Smagorinsky modeling of turbulent channel flow using generalized Lattice Boltzmann equation
Authors:Saeed Jafari  Mohammad Rahnama
Institution:Mechanical Engineering Department, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract:Generalized Lattice Boltzmann equation (GLBE) was used for computation of turbulent channel flow for which large eddy simulation (LES) was employed as a turbulence model. The subgrid‐scale turbulence effects were simulated through a shear‐improved Smagorinsky model (SISM), which is capable of predicting turbulent near wall region accurately without any wall function. Computations were done for a relatively coarse grid with shear Reynolds number of 180 in a parallelized code. Good numerical stability was observed for this computational framework. The results of mean velocity distribution across the channel showed good correspondence with direct numerical simulation (DNS) data. Negligible discrepancies were observed between the present computations and those reported from DNS for the computed turbulent statistics. Three‐dimensional instantaneous vorticity contours showed complex vortical structures that appeared in such flow geometries. It was concluded that such a framework is capable of predicting accurate results for turbulent channel flow without adding significant complications and the computational cost to the standard Smagorinsky model. As this modeling was entirely local in space it was therefore adapted for parallelization. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:Lattice Boltzmann method  large eddy simulation  turbulent flow  Smagorinsky model  channel flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号