首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis, structure, and inclusion capabilities of trehalose-based cyclodextrin analogues (cyclotrehalans)
Authors:Rodríguez-Lucena David  Benito Juan M  Alvarez Eleuterio  Jaime Carlos  Perez-Miron Javier  Mellet Carmen Ortiz  Fernandez José M García
Institution:Departamento de Química OrgAnica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41012 Sevilla, Spain.
Abstract:Concise and efficient strategies toward the synthesis of D2h- and D3h-symmetric cyclodextrin analogues alternating alpha,alpha'-trehalose disaccharide subunits and pseudoamide segments (cyclotrehalans, CTs) are reported. The conformational properties of these cyclooligosaccharides are governed by the rigidity of the alpha,alpha'-trehalose disaccharide repeating unit and the partial double-bond character of the N-(C=X) linkages. In contrast to the typical concave-shaped cavity of cyclodextrins (CDs), CTs feature a convex-shaped hydrophobic cavity in which the beta-face of the monosaccharide subunits is oriented toward the inner side, as supported by NMR and modeling (molecular mechanics and dynamics) studies. In the case of cyclodimeric CTs (CT2s), the existence of intramolecular hydrogen bonds results in collapsed cavities, too small to allow the formation of inclusion complexes with organic molecules. Cyclotrimeric CTs (CT3s) display cavity sizes that are intermediate between those of alphaCD and betaCD, ideally suited for the complexation of complementary guests with ternary symmetry such as adamantane 1-carboxylate (AC). The higher flexibility of the pseudoamide bridges as compared with classical glycosidic linkages endow these glyconanocavities with some conformational adaptability properties, making them better suited than CDs for complexation of angular guests, as seen from comparative inclusion capability experiments against the fluorescent probes 6-p-toluidinonaphthalene-2-sulfonate (TNS; linear) and 8-anilinonaphthalene-1-sulfonate (ANS; angular).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号