Simple poly(dimethylsiloxane) surface modification to control cell adhesion |
| |
Authors: | Min‐Hsien Wu |
| |
Affiliation: | Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan |
| |
Abstract: | Poly(dimethylsiloxane) (PDMS) has a long history of exploitation in a variety of biological and medical applications. Particularly in the past decade, PDMS has attracted interest as a material for the fabrication of microfluidic biochip. The control of cell adhesion on a PDMS surface is important in many microfluidic applications such as cell culture or cell‐based chemicals/drug testing. Unlike many complicated approaches, this study reports simple methods of PDMS surface modification to effectively inhibit or conversely enhance cell adhesion on a PDMS surface using Pluronic surfactant solution and poly‐L ‐lysine, respectively. This research basically succeeded our prior work to further confirm the long‐term capability of 3% Pluronic F68 surfactant to suppress cell adhesion on a PDMS surface over a 6‐day cell culture. Microscopic observation showed that the treated PDMS surface created an unfavorable interface, where chondrocytes seemed to clump together on day 2 and 6 after chondrocyte seeding, and there was no sign of chondrocyte spreading. On the opposite side, results demonstrated that the poly‐L ‐lysine‐treated surface significantly increased fibroblast adhesion by 32% in contrast to the untreated PDMS, which is comparable to the commercial cell‐culture‐grade microplate. However, fibronectin treatment did not have such an effect. All these fundamental information is found useful for any PDMS‐related application. Copyright © 2008 John Wiley & Sons, Ltd. |
| |
Keywords: | poly(dimethylsiloxane) PDMS cell adhesion surface modification protein adsorption |
|
|